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CHAPTER ONE
1. INTRODUCTION
DEFINITION OF TERMS

1.1 ALGORITHM

An algorithm is an effective method that can be expressed within a finite
amount of space and in a well-defined formal language for calculating a func-
tion. Starting from an initial state and initial input (sometimes empty i.e
0), the instructions describe a computation that, when executed, proceeds
through a finite number of well-defined successive states, eventually produc-
ing an ”output” and terminating at a final ending state.

It is a step by step procedure used to solve a mathematical computation.

1.2 ONE-STEP METHOD

One-Step algorithms are characterised by the fact that they have no” memory” .
I use the word ”memory” because one-step method algorithm treats each new
time step computation as an initial value problem and does not use any pre-
viously computed solution points. e.g to compute the solution point Yj41, a
one step algorithm uses the solution point Y; as initial value, and does not
use any previously computed solution points. An example of the one-step
method is the Euler method.

1.3 RUNGE-KUTTA METHOD

The Runge-Kutta methods are a large class of one-step algorithms.
Let b, aij (4,5,=1,..-, 8 ) be real numbers and let ¢; = Xj=;. An s-stage
Runge-Kutta method is given by

ki=f(to+c¢-h,yo+hzaijkj),i=1,...,5 (1)
3=1

yi = yo + h Tjoy biki .



1.4 EULER METHOD

The simplest solution for an ordinary differential equation with an initial
value problem is Euler’s method, given by

Yo=17
}/3+1=1/‘3+hjf(tj}¥})$]=0:1a1p_1 (2)

where hj= t;,,-¢; is the time step.

Euler’s method has the basic features common to all solution algorithms. The
algorithm starts with the given initial value Yo=y(to)=, and then marches
forward in time, computing the sequence of approximate solution values

Yo=y(t), V1 = y(ty), Yo ~ Y(t2), ..., Y, ~ y(t,) in order.
1.5 ERROR

This is the difference between the exact mathematical solution and the
approximate solution obtained when simplifications are made to the mathe-
matical equations to make them more amenable to calculation.

1.6 TRUNCATION ERROR

In computation, truncation error is the discrepancy that arises from ex-
ecuting a finite number of steps to approximate an infinite process. For

example, =
:L.‘.I"&

ff:nZ:(:)?IT =l+s+a /4233 +. ..
e =1+a+22/2
Fi=e"+1+a+22/24+23/31+ ...
ko = 1+x+x2/2!
Trucation error = ki — ky = 1+ z + 22/2! +2%/81+ ... (1+ 2z +22/2)) =
z® +24/4] . ..

n=3
TE=Y L

n
n!




Note: Truncation error could be either local or global. It is local if the
truncation error T, is the error that our increment function, A , causes during
a single iteration, assuming perfect knowledge of the true solution at the
previous iteration. More formally, the local truncation error, 7, , at step n
is computed from the difference between the left- and the right-hand side
of the equation for the increment yn =~ Yn-1 + hA(to-1,Un-1:6F) ¢ Ta =
y(tn) == y(tnrl) o h'A(tn—l: y(tn—l)? h, f)

The numerical method is consistent if the local truncation error is o(h)
(this means that for every € > 0 there exists an H such that || < eh for all
h < H ). If the increment function A is differentiable, then the method is
consistent if, and only if,A(t,y,0, f) = f(t, y) .

Furthermore, we say that the numerical method has order p if for any
sufficiently smooth solution of the initial value problem, the local truncation
error is O(hP*!) (meaning that there exist constants C' and H such that
|Ta| < ChP*! for all h < H ).

The truncation is global if the truncation error is the accumulation of the
local truncation error over all of the iterations, assuming perfect knowledge of
the true solution at the initial time step. More formally, the global truncation
error,e, , at time t, is defined by:

en = Y(tn) — Un = Y(ta) — (v0 + hA(to, Y0, b, f) + hA(t1, 11, h, f)+

sowde DAkt Yieti T f))-

The numerical method is convergent if global truncation error goes to
zero as the step size goes to zero; in other words, the numerical solution
converges to the exact solution: limy,_,0 max, |e,| = 0.



CHAPTER TWO

2. REVIEW OF SOME EXISTING METHODS

EULER’S METHODS

Leonhard Euler was one of the giants of 18th Century mathematics. Like
the Bernoullis, he was born in Basel, Switzerland, and he studied for a while
under Johann Bernoulli at Basel University. But, partly due to the over-
whelming dominance of the Bernoulli family in Swiss mathematics, and the
difficulty of finding a good position and recognition in his hometown, he
spent most of his academic life in Russia and Germany, especially in the
burgeoning St. Petersburg of Peter the Great and Catherine the Great.

Despite a long life and thirteen children, Euler had more than his fair
share of tragedies and deaths, and even his blindness later in life did not slow
his prodigious output - his collected works comprise nearly 900 books and,
in the year 1775, he is said to have produced on average one mathematical
paper every week - as he compensated for it with his mental calculation skills
and photographic memory (for example, he could repeat the Aeneid of Virgil
from beginning to end without hesitation, and for every page in the edition
he could indicate which line was the first and which the last).!

Today, Euler is considered one of the greatest mathematicians of all time.
His interests covered almost all aspects of mathematics, from geometry to
calculus to trigonometry to algebra to number theory, as well as optics, as-
tronomy, cartography, mechanics, weights and measures and even the theory
of music.

Much of the notation used by mathematicians today - including e,i, f (z),
2., and the use of a, b and ¢ as constants and z, y and z as unknowns -
was either created, popularized or standardized by Euler. His efforts to stan-
dardize these and other symbols (including and the trigonometric functions)
helped to internationalize mathematics and to encourage collaboration on
problems.

IThe Aeneid is a Latin epic poem, written by Virgil between 29 and 19 BC, that
tells the legendary story of Aeneas, a Trojan who travelled to Italy, where he became the
ancestor of the Romans. It comprises 9,896 lines in dactylic hexameter.
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He even managed to combine several of these together in an amazing feat
of mathematical alchemy to produce one of the most beautiful of all math-
ematical equations, €™ = —1, sometimes known as Eulers Identity. This
equation combines arithmetic, calculus, trigonometry and complex analysis
into what has been called ”the most remarkable formula in mathematics”,
"uncanny and sublime” and ”filled with cosmic beauty”, among other de-
scriptions. Another such discovery, often known simply as Eulers Formula,
is ¢ = cosz + isinz. In fact, in a recent poll of mathematicians, three
of the top five most beautiful formulae of all time were Eulers. He seemed
to have an instinctive ability to demonstrate the deep relationships between
trigonometry, exponentials and complex numbers.

The discovery that initially sealed Eulers reputation was announced in
1735 and concerned the calculation of infinite sums. It was called the Basel
problem after the Bernoullis had tried and failed to solve it, and asked what
was the precise sum of the of the reciprocals of the squares of all the natural
numbers to infinity i.e. 1/124+1/22+1/3%+1/42. .. (a zeta function using a
zeta constant of 2). Eulers friend Daniel Bernoulli had estimated the sum to
be about 1%, but Eulers superior method yielded the exact but rather unex-
pected result of % He also showed that the infinite series was equivalent to
an infinite product of prime numbers, an identity which would later inspire
Riemanns investigation of complex zeta functions.

Also in 1735, Euler solved an intransigent mathematical and logical prob-
lem, known as the Seven Bridges of Knigsberg Problem, which had perplexed
scholars for many years, and in doing so laid the foundations of graph the-
ory and presaged the important mathematical idea of topology. The city of
Knigsberg in Prussia (modern-day Kaliningrad in Russia) was set on both
sides of the Pregel River, and included two large islands which were con-
nected to each other and the mainland by seven bridges. The problem was
to find a route through the city that would cross each bridge once and only
once.

In fact, Euler proved that the problem has no solution, but in doing so
he made the important conceptual leap of pointing out that the choice of
route within each landmass is irrelevant and the only important feature is
the sequence of bridges crossed. This allowed him to reformulate the problem
in abstract terms, replacing each land mass with an abstract node and each
bridge with an abstract connection. This resulted in a mathematical struc-




ture called a graph, a pictorial representation made up of points (vertices)
connected by non-intersecting curves (arcs), which may be distorted in any
way without changing the graph itself. In this way, Euler was able to deduce
that, because the four land masses in the original problem are touched by an
odd number of bridges, the existence of a walk traversing each bridge once
only inevitably leads to a contradiction. If Knigsberg had had one fewer
bridges, on the other hand, with an even number of bridges leading to each
piece of land, then a solution would have been possible.

The list of theorems and methods pioneered by Euler is immense, and
largely outside the scope of an entry-level study such as this, but mention
could be made of just some of them: the demonstration of geometrical prop-
erties such as Eulers Line and Eulers Circle; the definition of the Euler Char-
acteristic (chi) for the surfaces of polyhedra, whereby the number of vertices
minus the number of edges plus the number of faces always equals 2 (see ta-
ble at right); a new method for solving quartic equations; the Prime Number
Theorem, which describes the asymptotic distribution of the prime numbers;
proofs (and in some cases disproofs) of some of Fermats theorems and con-
jectures; the discovery of over 60 amicable numbers (pairs of numbers for
which the sum of the divisors of one number equals the other number), al-
though some were actually incorrect; a method of calculating integrals with
complex limits (foreshadowing the development of modern complex analysis);
the calculus of variations, including its best-known result, the Euler-Lagrange
equation; a proof of the infinitude of primes, using the divergence of the har-
monic series; the integration of Leibniz’s differential calculus with Newton’s
Method of Fluxions into a form of caleulus we would recognize today, as
well as the development of tools to make it easier to apply calculus to real
physical problems etc.

In 1766, Euler accepted an invitation from Catherine the Great to re-
turn to the St. Petersburg Academy, and spent the rest of his life in Russia.
However, his second stay in the country was marred by tragedy, including a
fire in 1771 which cost him his home (and almost his life). and the loss in
1773 of his dear wife of 40 years, Katharina. He later married Katharina’s
half-sister, Salome Abigail, and this marriage would last until his death from
a brain hemorrhage in 1783.




The main objective of Euler’s method in solving initial value prolem is to
obtain approximations to the well-posed initial value problem
dy

= =fty)ast<sbyle)=a (3)

A continuous approximation to the solution will not be obtained; instead
approximations to y will be generated at various values, called mesh points,
in the interval [a,b]. Once the approximate solution is obtained at the points,
the approximate solution at other points in the interval can be found by in-
terpolation.

To do this, we first make the stipulation that the mesh points are equally
distributed throughout the interval [a,b]. This condition is ensured by choos-
ing a positive integer N and selecting the mesh points

t;=a+1th, foreachi=0,1,2,...,N.

The common distance between the points h = U’-Rrﬂ = t;41 — t; is called the
step size.

We now use Taylor’s theorem to derive the Euler’s method.

Suppose that y(t), the unique solution to (3), y(a) = a has two continuous

derivatives on [a,b], so that for each i =0,1,2,...,N —1,
' (tz’+l S t€)2 "
y(tisr) = y(ts) +y(tin — )y () + ——5—— (&:) (4)
for some number §; in (t;,tis1). Therefore, because h = tiy1 — ti, we have
h2
y(tivr) = y(t:) + hy'(t:) + Eyﬂ(&f) (5)

and, because y(t) satisfies the differential eqquation y' = f(¢,y), we write

Yltirs) = ) + Bt y(t) + /(6

Euler method constructs wy = y(t;) for each i = 1,2,..., N, by deleting the
remainder term. Thus Euler’s method is

Wy =«

Wis1 = w; + hf(ti, wi), (6)for each i =0,1,...,N -1
This equation is called the difference equation associated with Euler’s method.



RUNGE-KUTTA METHODS

Runge-Kutta methods compute approximations Y; to yi = y(z;), with
initial values Yy = yo = @, where z; = a + ih,i € Z*. Again, using Taylor
series expansion

1 1
Yn+1 = Yn + hyp + §h2yi: +...+ i;h”yap’ +0(h? + 1) (7)

so if we term f(Zn,Yn) = fn €tc. :

=t 1 2df 1 pdp_lf
yn+l“—yn+hfn+2h(£)n+...+ h(

A (gt o(R**t)  (8)

h is a non-negative rcal constant called the step length of the method. To
obtain a ¢-stage Runge-Kutta method (¢ function evaluations per step) we
let

Yn+1 = Yn s h(b(mn) Yn; h)= (g)
where &
$(Tn, Yoi ) =D wiki, (10)
i=1
so that -
Yﬂ+1 = Yn + h Zwik‘iu (11)
i=1
with =
k" = f({l?n + h{Ii,Yn + hz ﬁfjkj) (12)
i=1

and a; = 0 for an explicit method or

q
ki = [z + hai, Yo + h Y Bijks) (13)
=1

3

for an implicit method. for an explicit method, Eq.(8) can be solved for
each k; in turn, but for an implicit method, Eq.(9) requires the solution of
a nonlinear system of k;s at each step. The set of explicit method may be
regarded as a subset of the set of implicit methods with fi; = 0, F2i
Explicit methods are obviously more efficient to use, but we shall see that
implicit methods do have advantages in certain circumstances.

8



For convenience, the coefficients a, §, and w of the Runge-Kutta method can
be written in the form of a Butcher array:

0

Cg | @21

e el A
b

Cs | Qg1 Qs2 - Qgs-1

Ibl by -+ be1 bs

Tablel- Butcher Tableau

HEUN’S METHODS

In mathematics and computational science, Heun’s method may refer to
the improved or modified Euler’s method (that is, the explicit trapezoidal
rule), or a similar two-stage RungeKutta method. If is named after Karl
Heun and is a numerical procedure for solving ordinary differential equations
(ODEs) with a given initial value. Both variants can be seen as extensions
of the Euler method into two-stage second-order RungeKutta methods.

The procedure for calculating the numerical solution to the initial value
problem via the improved Euler’s method is:

y'(t) = f(t,y(t), y(to) = ¥o, (14)

by way of Heun’s method, is to first calculate the intermediate value git1
and then the final approximation y;4+1 at the next integration point.

Jis1 = ¥i + hf(ti, Yi)

Yier = Ui + %[f(tis y:) + f(tisrs Girr))s (15)

where h is the step size and tj41 =& + h.

Eulers method is used as the foundation for Heuns method. Euler’s
method uses the line tangent to the function at the beginning of the in-
terval as an estimate of the slope of the function over the interval, assuming
that if the step size is small, the error will be small. However, even when
extremely small step sizes are used, over a large number of steps the error
starts to accumulate and the estimate diverges from the actual functional
value.



Where the solution curve is concave up, its tangent line will underesti-
mate the vertical coordinate of the next point and vice versa for a concave
down solution. The ideal prediction line would hit the curve at its next
predicted point. In reality, there is no way to know whether the solution
is concave-up or concave-down, and hence if the next predicted point will
overestimate or underestimate its vertical value. The concavity of the curve
cannot be guaranteed to remain consistent either and the prediction may
overestimate and underestimate at different points in the domain of the so-
lution. Heuns Method addresses this problem by considering the interval
spanned by the tangent line segment as a whole. Taking a concave-up exam-
ple, the left tangent prediction line underestimates the slope of the curve for
the entire width of the interval from the current point to the next predicted
point. If the tangent line at the right end point is considered (which can be
estimated using Eulers Method), it has the opposite problem. The points
along the tangent line of the left end point have vertical coordinates which
all underestimate those that lie on the solution curve, including the right
end point of the interval under consideration. The solution is to make the
slope greater by some amount. Heuns Method considers the tangent lines
to the solution curve at both ends of the interval, one which overestimates,
and one which underestimates the ideal vertical coordinates. A prediction
line must be constructed based on the right end point tangents slope alone,
approximated using Euler’s Method. If this slope is passed through the left
end point of the interval, the result is evidently too steep to be used as an
ideal prediction line and overestimates the ideal point. Therefore, the ideal
point lies approximately half way between the erroncous overestimation and
underestimation, the average of the two slopes. Heun’s Method.

10
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A diagram depicting the use of Heun’s method to find a less erroneous prediction when
compared to the lower order Euler’s Method

Eulers Method is used to roughly estimate the coordinates of the next
point in the solution, and with this knowledge, the original estimate is re-
predicted or corrected. Assuming that the quantity f(z,v) on the right hand
side of the equation can be thought of as the slope of the solution sought at
any point (z,y) , this can be combined with the Euler estimate of the next
point to give the slope of the tangent line at the right end-point. Next the
average of both slopes is used to find the corrected coordinates of the right
end interval. Derivation

Slopees = f(Zi, Yi)
Sloperight = f(xi 5 h’a Vi + hf($5, yl))

Slope;jea = %(S lope;, g¢+ S JOPBrz'gm)

Using the principle that the slope of a line equates to the rise/run, the
coordinates at the end of the interval can be found using the following for-
mula:

Slope;jeq = (Ay/h)
Ay = h(SIOpeideai)

Tiv1 = Ti+ hyis1 =y + Ay

11




Yi+1 = yi + hSlope,,, ,

1
Yitr1 =y + §h(3301?€¢e ft + Sl()peright)

size is decreased, whereas the Heun Method improves accuracy quadratically.
The scheme can be compared with the implicit trapezoidal method, but with
F(tir1, Y1) replaced by f(tis1,§is1) in order to make it explicit.§;,; is the
result of one step of Euler’s method on the same initia] value problem. So,
Heun’s method is a predictor-corrector method with forward Euler’s method
as predictor and trapezoidal method as corrector.

12



CHAPTER THREE

3. IMPLEMENTATION OF RUNGE-KUTTA AND EULER METHOD

We now proceed to use the Runge-Kutta and the Euler methods to solve
an initial value problem.

Example 1: Use the 4th order Runge-Kutta method with A = 0.1 to find
the approximate solution for y(1.1), for the initial value problem

dy
B 1) =
. 2zy,y(1) =1

The Runge-Kutta method is given by

Tn+1 :$ﬂ+h

1
Yntl = Yn + ("é)(kl + 2k + 2ks + ks) (17)

where

ki = hilea )

h ky
ko= hf(ma+ 500+

)

= h ks
k.'i st h’f(xn i §:yn Iz ?)

ky = hf(z, + h,yn + k3)
We have dy/dx = f(x,y) = 2xy.
If you require the 4th order approximation the formula will be:
y(zo + h) = y(zo) + (1/6)[k1 + 2k2 + 2ks + k4

where:

ky = h* f(zo.yo) = 0.1(2)(1)(1) = 0.2
by = % f(zo -+ h/2, 70 + k1/2) = 0.1(2)(1.05)(1.1) = 0.231

13




ks = h* f(zo+ h/2,9)0 + k2/2) = 0.1(2)(1.05)(1.1155) = 0.234255
ke = h* f(o+ h, y)0+ ks) = 0.1(2)(1.1)(1.234255) = 0.2715361

and so:

y(1.1) = 1+ (1/6)[0.2 +2(0.231) + 2(0.234255) + 0.2715361]

= 1.23367435

14



MATLAB CODE FOR SOLVING RUNGE-KUTTA METHOD

function z = myfun3(t,y)

z= 2¥y¥¢:

end _
[tvl z1] = oded5 (‘myfun3’, [1,1.4],0.7);
plot (tvl, z1)

grid

Example 1 using runge-kutta

L

i I 1
1 1.05 1i9 1.156 T2 1.25 1.3 1.35 1.4

graphl showing result to examplel using rungekutta method

We can compare this with the exact solution to the problem.

/dy/y — /2a;d$

In(y) =2*+C

and integrating:

15




and y=1 when 2=1

0=14C
and so
C=-1
. Therefore:
In(y) =2* -1
y =@
When z = 1.1 ,this gives:
y = e(11%-1)
—
= 1.23367806

16



The error term Is given by

Error= Actual valye —

Approximate value
Hence,

Error = 1.23367806 — 1.23367435

= 0.00000371
We then proceed to use Euler m

ethod to solve the same initja) value problem
gf =22y,y(1) = 1 with h=01

to find the approximate solutjon for y(1.1).

The Euler method is given by

W, = ¢y

wz'-i—-l =y + hf(tt'awt'):

foreacha'z[},l,...,N—l.

Givcnthat{%zzcy y(1) =1 h=01 N=¢4 Zo=1 and 3 =1
Tp= =Ty +h

Ynv1 =y, + hf(i', y)
When n =

0, we have that

Tl =gy = T1+h=1 +0.1 = 1.10000

N =Yor1 =y, + hf(z,, Yo)
=1+ 0.1(1)(1)
= 1.1000
Hence, z, = 1.1000 and ¥1=1.1000

When n = 1, we have that

L2 =214 = T+ h= 1.1000 +0.1 = 1.2000

V=thuy=y+ hf(xl;yl)
= 1.1000 + 0.1(1.1000)(1.1000)
=1.2210

Hence, z, = 1.2000 and Y2 = 1.2210
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When n = 2, we have that
T3 = To41 = T2 + h = 1.2000 + 0.1 = 1.3000

Ys = Y241 = Y2 + hf (22, 40)
= 1.2210 + 0.1(1.2000)(1.2210)
= 1.36752
Hence, 23 = 1.3000 and y3 = 1.36752

Again, when n = 3, we have that
Ty =T341 = T3+ h+1.3+ 0.1 = 1.4000

Ya = Y3+1 = Y3 + hf(x3, x3)
= 1.36752 + 0.1(1.3)(1.36752)
= 1.5452976
Hence, 24 = 1.4000 and gy, = 1.5452976 ~ 1.5452

MATLAB CODES FOR EULER METHOD

t=zeros(201,1);
y=zeros(201,1);

t(1)=0;

y(1)=1;

for i=1:200

t(i+1)=t(i)+0.01;
y(i+1)=y(i)+0.01*(y(i)*2*t(i));
end

plot(t,y)

grid

title (Example 1 using Euler method )
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Example 1 using Euler method

graph2 showing result of euler method

The table for the approximate value of ¥(x) is shown below

Tn | approximate

1.1000
1.2218
1.36752
1.5452976

Table 2 showing the points and their approximate values

The error again, is given by :

Error= Actual value — Approximate value

19



Hence from our previous workings, we have our actual value to be 1.23367806

Therefore,
Error = 1.23367806 — 1.5452976

= —0.31161954 ~ —0.3116

Example 2: We solve again for
y=1+9% y0)=1
Do this on the command window

MATLAB CODE FOR EULER METHOD

t=zeros(201,1);

y=zeros(201,1);

t(1)=0;

y(1)=1;

for i=1:200

t(i+1)=t(i)+0.001;
y(i+1)=y(i)+0.001*((y(i).>) + 1);
end

plot(t,y)
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Exarnple 2 using Euler method

1.7 T ! T

graph 3 showing the result using euler method
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We then solve the same problem using Runge-kutta method
MATLAB CODES FOR RUNGE-KUTTA METHOD

function z = myfunl(t,y)

[tvl z1] = oded5('myfunl’, [0,0.30], 0.9);
plot(tvl ,z1 ,'0’);

title ("Example 2 using Runge-Kutta’);
grid

function z = myfun1(t,y)

end

z=1 F 94

end

Example 2 using Runge-Kutta
18 . T r 1 T T

i i 1
0 0.05 0.1 0.15 02 0.25 0.3 0.35

graph 4 showing result to example 2 using runge-kutta method
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Example 3: Again solve for another problem
Y=9¢ y0)=1
Do this on command window
MATLAB CODE FOR EULER METHOD

t=zeros(201,1);
y=zeros(201,1);

t(1)=0;

y(1)=1

for i=1:200
t(i+1)=t(i)4-0.001;
y(i+1)=y(i)+0.001*(y(i).2);
end

plOt(t$YI’g ',)

grid

title (Example 3 using Euler method)

Example 3 using Euler method
1.25 , T T T

e
. /}/r :
s [ e e ,‘ ................. ‘ ..... J,.<’./ ......... .................
: : L s
; s
Lo L ................. //{, ..................................
g "/_»
1.1 _ ............ ’ .................................................... 4
- 5
1. I i e v el R e A b e i B T S -
05 s . : :
Ao 5 : :
a é é
i : : : :
1 =~ 1 L 1 1
0 0.05 0.1 0.15 0.2 0.25
t

graph 5 showing result to example 3 using euler method
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Solution to Example 3 using Runge-kutta method
MATLAB CODES FOR RUNGE-KUTTA METHOD

[tvl z1] = oded5 ('myfun3’, [0,0.4],0.9);

plot (tvl, z1,’r -")

grid

title ("Example 3 using Runge-Kutta method’)
function z = myfun3(t,y)

By

end

Example 3 using Runge-Kutta method

15 ; J ; ; ; ; {

09 ' '
0 :

graph 6 showing result to example 3 using Runge-kutta method

24




Example 4: Solve the initial value problem y =y y(0) =1 using both
Euler and Runge-Kutta methods

MATLAB CODES FOR EULER METHOD

t=zeros(201,1);
y=zeros(201,1);

t(1)=0;

y(1)=1;

for i=1:200
t(i+1)=t(i)+0.001;
y(i+1)=y(i)+0.001* (y());
end

plOt(t$y11g -‘)

grid

title ("Example 4 using Euler method’)

Example 4 using Euler method

1.2 ; ; f !
4 Dikssncninansins ................. ......... / .................
1.5 fen snpmsssnsns hanrammrnssn s g s s e o ./.’.‘ ................................... -
pd
= f_,f;
1.1 _ .............. y ,” ............... ( ................ J
._.// :
Al :
105_ ............. /..’” ................ . ................. ................ .
"H).f .
1 L i | i i
0 0.05 0.1 0.15 02 0.25
i

graph 7 showing result to example 4 using Euler method

25



Solution to Example 4 using Runge-kutta method
MATLAB CODES FOR RUNGE-KUTTA METHOD

[tvl z1] = oded5 ('myfund’, [0,1],0.5);

plot (tvl, z1,'g ")

grid

title ("Example 3 using Runge-Kutta method’)
function z = myfund(t,y)

z=Y;

end

Example 4 using Runge-Kutta method
1.4 T T T T T i | T T

graph 8 showing result to example 4 using Runge-kutta method
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CHAPTER FOUR

4. COMPARISON OF THE PERFORMANCE OF THE TWO
METHODS
We now proceed to use the solution graphs plotted in the examples in an
attempt to compare and contrast the two methods used so far in this work.
We start by comparing the result of cach method in example 1. The graph
below shows the method which best approximates the solution to the initial
value problem % = Jpy u(l) =1,

Examplel using Euler method
60 . y

P SRR, ........... s i

Examplel using Runge-Kutta method

MATLAB CODES

[tvl z1] = ode45 ('myfun?’, [1,1.4],0.7);
plot (tvl, z1)

title("Example 1 using runge-kutta’);
grid

subplot('221°);

t=zeros(201,1);
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y=zeros(201,1);

t(1)=0;

y(1)=1;

for i=1:200

t(i+1)=t(i)+0.01;

y{i-+1) =y ()+0.01%(2¥y (i)t (i)
end

plot(t,y)

grid

subplot('224")

title('Examplel using Euler method’);

We see from the above graphical solution that the Runge-Kutta method
gives a closer approximation to the probelm in question.

Example2 using Euler mthod

Example2 using Runge-Kutta method
2 . ;

05 ¢ ;
0 0.1 02 0.3 0.4

Graphical comparison of the solution to example2
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MATLAB CODES

[tv1 z1] = ode45('myfunl’, [0,0.30],0.9);
plot(tvl, z1,’r -")

title ("Example2 using Runge-Kutta method’);
grid

subplot(’221");

t=zeros(201,1);

y=zeros(201,1);

t(1)=0;

y(1)=1;

for i=1:200

t(i+1)=t(i)+0.001;
y(i+1)=y(i)+0.001*((y(i).%) + 1);

end

plot(t,y)

grid

title ("Example2 using Euler mthod’)
subplot(’224’)
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Note that the solution to example 2 using the matlab code
dsolve('Dy — y> — 1 =0/ y(0) = 1'); is tan 4= and the graph of the
solution is shown below

Graph of exact solution to exarmple 2

8 g T ; T T
T OO T ................. ................ |
; i ) STt ................. ................. ................ ................ 4
"0 1| SRR WAS———— e See T R

= : : : y
13_ ................. ............... ................ gt
12_ ,,,,,,,,,,,,,,,, ................. ................. ................ o
| S T ................. ................. ................ i

1 i 1 i |

0 0.05 0.1 015 0.2 0.25
t

We see that the Runge-Kutta gives an almost accurate approximation to the initial value
problem.
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We also put into consideration the comparison of the
3 from the graph below

Example 3 using Euler method

Example 3 using Runge-Kutta method

solutions in Example

1.4
BB
N0 ......... ........
i e Be
10 0.1 U.;Q 0.3 0.4
1
13
% R
e
i
D‘QU G.;1

graphical solutions of example

MATLAB CODES

tvl z1= ode45 ('myfun3’, [0,0.3],0.9);
plot (tvl, z1,'r -’)

grid

title ("Example 3 using Runge-Kutta method’)
subplot(’221’);

t=zeros(201,1);

y=zeros(201,1);

t(1)=0;

y()=L

for i=1:200

t(i+1)=t(i)+0.001;
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y(i+1)=y(i)+0.001*((y(i)?));

end

plot(t,y);

grid

title ("Example 3 using Euler method’)
subplot (224")

We see from the graph of the actual solution below that the Runge-Kutta
method is by no means better than the Euler method.

Exact solution of example 3
1.25 T r T

i i i i
0 0.05 0.1 0.15 0.2 025
X

graphical repreentation of the actual solution of example3

MATLAB CODES

dsolve('Dy — y* = 0/, y(0) = 1');
plot (t,y);

grid

title ("Exact solution of example 3")
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Also taking a look at Exampled, we see that we can safely conclude that
even though the euler method gives a probable solution to the initial value
problem, its result can’t be fully relied on because of the magnitude of the
error. One would rather want to use the Runge-kutta 4th order method as
seen from the graphical comparison below

Example 4 using Euler method

125 ; T ! !
1 Dibsswseimnsis ................. ........ /" ............... o
Y AB R s i v el e S e ; ................ J
: : Ca :
- e
. L : :
: 2 T e e e s 4
14 SR e , ,f" ................. : ]
4
o3 .r'/ . .
1‘05-.,.,,..,,,...;,,‘,:’.' ............... ................. TR il
gl : : ;
‘_f;, I:
1 i 1 1 i
0 0.05 0.1 0.15 0.2 0.25
t
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1.4
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09
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07

0.6

0.5
]

Example 4 using Runge-Kutta method

graphical comparison of exampled
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Exact solution of example 4

SRy ke TSI

L ................ .................
145 F e ................ ................ ................ il
e ................. ................. ................ i
105 F e ................. ................. ................ .
1 i i i i
0 0.05 01 0.15 0.2 0.25

graphical representation of the actual solution to exampled

MATLAB CODES

tv1 z1= oded5 (‘myfund’, [0,5],0.5);
plot (tvl, z1,’g -");

grid

title ("Example 4 using Runge-Kutta method’)
t=zeros(201,1);

y=zeros(201,1);

t(1)=0;

y(1)=1;

for i=1:200

t(i+1)=t(i)+0.001;
y(i+1)=y(i)+0.001*(y(1));

end

plot(t,y,'g -)

grid

title ("Example4 using Euler method’)
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From the solved examples we see that;

¢ Buler’s method has the basic features common to all solution algo-
rithms. The algorithm starts with the given initial value Yo=y(t,)=r,
and then marches forward in time, computing the sequence of ap-
proximate solution values Y, = Y(xo), Y1 = y(z,), Vs =~ y(z2), ..
Y, = y(z,) in order.

¢ The higher the number of iterations the higher the error.

In contrast, the 4th order Runge-Kutta method present an “almost
accurate” result to the actual solution. It is evident from our result for the
4th order Runge-Kutta method that:

e Better approximations are gotten from higher order of the method as
seen in the problem in the last chapter. The best approximation was
gotten from the highest order used. A finer approximation will be
gotten still if we try using the 5th order Runge-Kutta method.

s e Even though the Euler method brought forth the basis for other one-
step method numerical solutions to problems, the Runge-Kutta method
is a better one-step method to use to get approximation to the numer-
ical solution of the problem as seen in the initial value problem solved.
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CONCLUSION

In this work, we've been able to see some of the available computa-
tional algorithm one can use to solve differential equations with given
initial values. This kind of problems usually arise in other fields like
Engineering, Applied Chemistry and even Physics. Therefore, there
is a necessity for us to equip ourselves with different tools to tackle
problems of this nature.

I would like to state here that the methods I have stated or used here are
not the only methods available to solve these kind of problems as we all
know. These methods are only but a few one-step algorithms/methods
out of the numerous available methods. We have other one-step mehods
like the Heun’s method, 5th order Runge-Kutta methods and other
multi-step methods like Adams method, Adams-Bashforth methods,
Adams-Moulton methods just to mention a few. Subsequent works of
this type can compare or contrast the effectiveness of these methods.
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