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Abstract In this paper, based on the theory of stochas-
tic differential equations, we study the outer syn-
chronization between two different complex dynam-
ical networks with noise coupling. The theoretical re-
sult shows that two different complex networks can
achieve generalized outer synchronization only with
white-noise-based coupling. Numerical examples fur-
ther verify the effectiveness and feasibility of the theo-
retical results. Numerical evidence shows that the syn-
chronization rate is proportional to the noise intensity.

Keywords Complex network · Synchronization ·
Noise

1 Introduction

Recently, synchronization of complex networks has
been extensively investigated [1–8]. It should be noted
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that most previous studies mainly focused on the “in-
ner synchronization” [9–13], which is concerned with
the synchronization among the nodes within a net-
work. Except for inner synchronization, we can also
observe other kinds of synchronization behavior for
complex networks, such as outer synchronization be-
tween two coupled networks, which means that the
corresponding nodes of coupled networks will achieve
synchronization regardless of synchronization of the
inner networks. Example of the outer synchroniza-
tion of complex networks includes the balance be-
tween predator–prey networks in ecological commu-
nities [14]. Compared with the rich work with respect
to the inner synchronization of complex networks, the
results on the outer synchronization are less numerous.

In the early papers on the outer synchronization,
it is usually assumed that the corresponding nodes in
two networks manifest completely the same dynam-
ics [15–18]. However, in reality, nodes in different
networks usually have different dynamics, while the
two networks may still behave in a synchronous way.
So, the study of the outer synchronization between
two networks with different dynamical behaviors is
very important to the perspective of control theory and
practical applications. Some theoretical results for the
outer synchronization between two complex networks
with different dynamics have been obtained [19–25].
In Ref. [19], the generalized outer synchronization be-
tween two completely different complex networks was
investigated. The concept of mixed outer synchroniza-
tion was introduced in Ref. [20]. Wu et al. [21] investi-
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gated the generalized outer synchronization in master–
slave networks with the open-plus-closed-loop control
technique. More recently, the finite-time generalized
outer synchronization between two different complex
networks was investigated [25].

Since noise is ubiquitous in the real systems, the
synchronization of coupled systems or networks is un-
avoidably affected by different kinds of noise. There-
fore, the effect of noise on synchronization has been
well studied by many scientists [26–31]. Noise is
commonly regarded as a persistent disturbance which
usually inhibits synchronization. However, recent re-
searchers have reported that noise could also play a
constructive role in nonlinear systems [28–31]. Lin
et al. [28] analytically showed that chaos synchroniza-
tion between two unidirectionally coupled chaotic sys-
tems could be induced by noise when noise presents in
coupling term, and proposed a good analytical method
to analyze this phenomenon. By using Lin’s method,
Xiao et al. investigated the effect of noise on the syn-
chronization of two bidirectionally coupled chaotic
systems [29]. Although noise-induced synchroniza-
tion of uncoupled oscillators or coupled-oscillator net-
work with small size has been extensively studied for
both periodic and chaotic oscillators [28, 29], works
on the constructive role of noise in the synchroniza-
tion of networks with a large population of coupled
oscillators are few. Negail et al. [30] showed that com-
mon noise can induce the synchronization of a large
population of globally coupled nonidentical oscilla-
tors. More recently, Xiao et al. showed that noise plays
a constructive role in the synchronization of globally
coupled dynamical network [31]. Thus, it becomes in-
teresting to ask such questions as the following: “Can
two completely different complex networks achieve
certain synchronization only with noise coupling?”
Or: “Besides the numerical evidence, are there any
analytical arguments illustrating such constructive ef-
fects of noise?”

Motivated by the above discussion, we devote our-
selves to focusing on the effect of noise on the outer
synchronization between two completely different
complex networks. In our study, each network can be
undirected or directed, connected or disconnected, and
both networks have different dynamics and topologies.
Based on the stability theory of stochastic differential
equations, we analytically show that two networks can
realize generalized outer synchronization only with
white-noise-based coupling.

The rest of this paper is organized as follows. In
Sect. 2, the network models and some useful pre-
liminaries are given. Based on the stability theory of
stochastic differential equations, sufficient conditions
for the generalized outer synchronization are derived
analytically in Sect. 3. In Sect. 4, two numerical ex-
amples are given to show the effectiveness of the theo-
retical results. Finally, some conclusions are drawn in
Sect. 5.

Notation Throughout this paper, unless specified, we
let ‖ · ‖ be Euclidean norm, I be an identity matrix
of suitable dimensions. If A is a vector or matrix, its
transpose is denoted by AT . If A is a symmetric ma-
trix, λmax(A) denotes its largest eigenvalue.

2 Network modeling and preliminaries

Consider a general complex network consisting of N

dynamical nodes with linear couplings, which is de-
scribed by

ẋi = f (xi) +
N∑

j=1

aijP xj , i = 1,2, . . . ,N, (1)

where xi = (xi1, . . . , xin)
T ∈ Rn is the state vector of

the ith node, f : Rn → Rn is a continuously differen-
tiable nonlinear vector function governing the evolu-
tion of the ith isolated node xi ; P ∈ Rn×n is the in-
ner connection matrix between two connected nodes;
A = (aij )N×N represents the coupling configurations
of the network, whose entries aij are defined as fol-
lows: if there is a link from node j to node i (i �= j)

then set aij > 0, otherwise aij = 0 (i �= j). The diago-
nal elements of matrix A are defined as

aii = −
N∑

j=1,j �=i

aij , i = 1,2, . . . ,N.

To realize the generalized outer synchronization
between two coupled complex networks, we refer to
model (1) as the drive network, and the response net-
work is given by the following equations:

ẏi = g(yi) +
N∑

j=1

bijQyj + ui, i = 1,2, . . . ,N, (2)
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where yi = (yi1, . . . , yim)T ∈ Rm is the state vector of
node i, g : Rm → Rm is a continuously differentiable
nonlinear vector function governing the evolution of
the ith isolated node yi . Q ∈ Rm×m is the inner con-
nection matrices, B = (bij )N×N is the coupling con-
figuration matrix, which has the same meaning as that
of matrix A. ui (i = 1,2, . . . ,N) are the controllers
defined as follows:

ui = DΦi(xi)ẋi − g
(
Φi(xi)

) −
N∑

j=1

bijQΦj (xj )

+ hi

(
yi − Φi(xi)

)
Ẇ (t), (3)

where DΦi(xi) is the Jordan matrix of the vector func-
tion Φi(xi), and hi : Rn → Rm×s is called the noisy
intensity matrix function; W(t) = (w1, . . . ,ws)

T is an
s-dimensional Brownian motion defined on a com-
plete probability space (Ω,F ,P ) with a natural
filtration {Ft }t≥0. Ẇ (t) = [ξ1(t), . . . , ξs(t)] is an
s-dimensional white noise vector with statistical prop-
erties 〈ξi(t)〉 = 0 and 〈ξi(t), ξj (t

′)〉 = δij δ(t − t ′)
(i, j = 1,2, . . . ,m).

Remark 1 In this paper, the configuration matrices A

and B of networks (1) and (2) are not assumed to be
symmetric or irreducible, which means that networks
(1) and (2) can be undirected or directed networks, and
they may also contain isolated nodes and clusters.

Since a linear controller has the simplest structure
and can be implemented more easily and efficiently,
therefore, for a better presentation, we set hi(yi −
Φi(xi)) = σ0 · (yi − Φi(xi)): being coincident with
this Ẇ (t) reduces to a one-dimensional white noise.
The extension to the case of s-dimensional white noise
is straightforward; we will only show a final result
for s = 1 in this paper. For this case, the coupling
strength σ0Ẇ (t) actually becomes white noise with
strength σ0. This is in accordance with the many realis-
tic phenomena that the coupling strengths of real oscil-
lator networks and biological systems are time varying
due to the perturbation of external or intrinsic noise.

In the case of one-dimensional white noise, the fo-
cus of this paper, the controllers in Eq. (3) can be
rewritten as

ui = DΦi(xi)ẋi − g
(
Φi(xi)

) −
N∑

j=1

bijQΦj (xj )

+ σ0
(
yi − Φi(xi)

)
Ẇ (t), i = 1,2, . . . ,N. (4)

Next, we first give the definition of outer synchro-
nization between two networks, followed by an as-
sumption, which are required throughout this paper.

Definition 1 Networks (1) and (2) are said to achieve
outer synchronization with probability one if, for any
initial state xi(0), yi(0),

P
{

lim
t→∞

∥∥yi

(
t, yi(0)

) − xi

(
t, xi(0)

)∥∥ = 0
}

= 1,

i = 1,2, . . . ,N. (5)

Let Φi : Rn → Rm be continuously differentiable
function. Networks (1) and (2) are said to achieve gen-
eralized outer synchronization with probability one if,
for any initial state xi(0), yi(0),

P
{

lim
t→∞

∥∥yi

(
t, yi(0)

) − Φi

(
xi

(
t, xi(0)

))∥∥ = 0
}

= 1,

i = 1,2, . . . ,N. (6)

Assumption 1 For function g(x) there exists a posi-
tive constant L such that

(x − y)T
(
g(x) − g(y)

) ≤ (x − y)T L(x − y),

for all x, y ∈ Rm.

Remark 2 The above condition in Assumption 1 is
usually called global Lipschitz condition, and L is
called Lipschitz constant. It is easy to check that some
well-known chaotic systems, such as Chuan’s circuit
[32] and Rössler-like system [33], satisfy Assump-
tion 1.

3 Main results

In what follows, based on the stability theory of
stochastic differential equations, it is shown that gen-
eralized outer synchronization between networks (1)
and (2) could be achieved with probability one just
through adjusting the intensity of white noise. The
main results are given in the following theorem.

Theorem 1 Suppose that Assumption 1 holds. If there
exists a sufficiently large noise strength σ0 such that

σ 2
0 > 2

(
λmax

(
Qs

) + L
)
,
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where Q = B ⊗ Q,Qs = Q+QT

2 , then, under con-
trollers (4), networks (1) and (2) can reach generalized
outer synchronization with probability one.

Proof Define ei = yi −Φi(xi) to be the error state be-
tween networks (1) and (2); then one gets the follow-
ing error system:

ėi = g(yi) − g
(
Φi(xi)

) +
N∑

j=1

bijQej + σ0 · eiẆ (t),

i = 1,2, . . . ,N. (7)

Let e = (eT
1 , eT

2 , . . . , eT
N)T ; then we can rewrite

system (7) in a compact form as follows:

ė = G(X,Y ) + B ⊗ Qe + σ0 · eẆ (t), (8)

where G(X,Y ) = (g(y1) − g(Φ1(x1)), . . . , g(yN) −
g(ΦN(xN)))T .

Applying the theory of stochastic differential equa-
tion (see Ref. [34, p. 51]), the error dynamics (8) poses
a unique global solution on t ≥ 0, denoted by e(t, e0),
for any initial data e0 ∈ RmN . Obviously, e(t,0) ≡ 0 is
a trivial solution of the error system (8). The general-
ized outer synchronization between networks (1) and
(2) is achieved in a statistical sense of probability one,
if this trivial solution is globally almost surely asymp-
totically stable , i.e. limt→∞ ‖e‖ = 0 with probability
one.

In what follows, we will give sufficient conditions
for the generalized outer synchronization between net-
works (1) and (2) with probability one. To this end, we
introduce the following function:

V (e) = 1

2
log eT e. (9)

By the Itô formula to (9), along the solution of system
(8), we have

V (e) = V
(
e(t0)

) +
∫ t

t0

L
[
V (e)

]
ds

+
∫ t

t0

Ve(e)σ0edW(s), (10)

where

L
[
V (e)

] = Ve(e)
(
G(X,Y ) + B ⊗ Qe

)

+ 1

2
trace

(
σ0e

T Vee(e)σ0e
)
, (11)

and

Ve(e) = eT

eT e
, Vee(e) = I

eT e
− 2

eeT

(eT e)2
.

From Assumption 1, we get

L
[
V (e)

] = 1

eT e

(
eT G(X,Y ) + eT B ⊗ Qe

)

+ 1

2
trace

(
σ 2

0 eT e

eT e
− 2

σ 2
0 (eT e)2

(eT e)2

)

≤ 1

eT e

(
LeT e + λmax

(
Qs

)
eT e

) − σ 2
0

2

= λmax
(
Qs

) + L − σ 2
0

2
.

Thus, we have

V
(
e(t)

) ≤ V
(
e(t0)

) +
(

λmax
(
Qs

) + L − σ 2
0

2

)
(t − t0)

+M(t), (12)

where

M(t) =
∫ t

t0

Ve(e)σ0edW(s) (13)

=
∫ t

t0

eT σ0e

eT e
dW(s). (14)

It is easy to see that M(t0) = 0, and the quadratic
variation is

[
M(t),M(t)

] =
∫ t

t0

eT σ0eσ0e
T e

(eT e)2
ds (15)

= σ 2
0 (t − t0). (16)

Therefore, according to the strong law of large num-
bers (see Ref. [34, p. 12]), one has that

lim
t→∞

M(t)

t
= 0, a.s. (17)

Combing Eqs. (10)–(17), we have an estimation of
V (t) as follows:

lim sup
t→∞

[
log(eT e)

2t

]
≤ λmax

(
Qs

) + L − σ 2
0

2
, a.s.

(18)
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Therefore, if

σ 2
0 > σ 2

c
.= 2

(
λmax

(
Qs

) + L
)
, (19)

then the trivial solution of (8) is almost surely ex-
ponentially stable. This means that generalized outer
synchronization between networks (1) and (2) could
be achieved with probability one provided that the
strength of white noise is large enough. The proof is
completed. �

Remark 3 The analytical result in Theorem 1 pro-
vides us a sufficient condition for the generalized outer
synchronization between noise-coupled networks (1)
and (2) in a statical sense, according to which as
long as the intensity of the coupling noise satisfies
σ 2

0 > 2(λmax(Qs)+L), the response network can syn-
chronize the drive network with a time shift. In fact,
the preceding mathematical proof shows that the con-
vergence rate of the synchronization can be estimated
from (18) and the generalized outer synchronization is
achieved if λmax(Qs) + L − σ 2

0 /2 is less than zero.
In the case of noise strength σ0 = 0, the damping
rate (18) becomes λmax(Qs) + L. Based on the clas-
sical Lyapunov direct method, one can easily prove
that the generalized outer synchronization between the
noiseless networks (1) and (2) could be achieved if
λmax(Qs) + L < 0. Moreover, when λmax(Qs) + L is
not less than zero, the damping rate (18) shows that the
generalized outer synchronization can be achieved by
adding the intensity of the coupling noise. Therefore,
we can see that the noise may indeed have beneficial
significance and impact on the synchronization.

Remark 4 From (18) we can see that the conver-
gence rate of the synchronization is exponential and
the larger the intensity of the noise, the faster the con-
vergence speed. Moreover, the threshold of the inten-
sity of coupled white noise can be estimated by the
sufficient condition (19). However, this kind of suffi-
cient condition might give an overestimated threshold
of the intensity of noise. The simulation results in next
section will show that outer synchronization could be
caused by a white noise with much lesser value of in-
tensity than the threshold estimated by the inequality
(19).

From Definition 1 we know that the complete
outer synchronization is a kind of special case of
the generalized outer synchronization if Φi(x) = x,

i = 1,2, . . . ,N . Based on Theorem 1, we can easily
derive the following corollaries:

Corollary 1 Let Assumption 1 hold. If networks (1)
and (2) have identical dynamics, namely, f = g and
σ 2

0 > σ 2
c , then the two networks can achieve complete

outer synchronization with probability one under the
following control scheme:

ui = σ0(yi − xi)Ẇ (t) +
N∑

j=1

(aijP − bijQ)xj ,

i = 1,2, . . . ,N. (20)

Corollary 2 Let Assumption 1 hold. If networks (1)
and (2) have the same topological structures and uni-
form inner-coupling matrices, i.e., A = B,P = Q,
and also have identical node dynamics, namely, f =
g, then the two networks can achieve complete outer
synchronization with probability one under the follow-
ing control scheme:

ui = σ0(yi − xi)Ẇ (t), i = 1,2, . . . ,N, (21)

where σ 2
0 > σ 2

c , and σ 2
c is defined as that in (19).

4 Numerical simulations

In this section, illustrative examples are given to ver-
ify the effectiveness of the theoretical criteria obtained
in the preceding section. In the numerical simula-
tions, we consider several networks with ten nodes.
For brevity, we always set P = Q = I . The initial con-
ditions of the drive network and the response network
are randomly taken from the interval [−1,1]. The total
synchronization error E(t) = ‖e‖ is used to measure
the evolution process.

Example 1 In this example, we use the Lorenz system
to describe the node dynamics of the driving network
and take the Rössler-like system as the node dynamics
of the response network.

The Lorenz system can be described as

ẋi = f (xi)

=
⎛

⎝
−a a 0
c −1 0
0 0 −b

⎞

⎠

⎛

⎝
xi1

xi2

xi3

⎞

⎠ +
⎛

⎝
0

−xi1xi3

xi1xi2

⎞

⎠ , (22)
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where xi = (xi1, xi2, xi3)
T ∈ R3 is the state vector.

System (22) has a double-scrolling chaotic attractor
when a = 10, b = 8/3, c = 28.

The Rössler-like system can be described as [33]:

ẏi = g(yi) = α

⎛

⎜⎝

−Γ −β −λ

1 γ 0

0 0 −μ

⎞

⎟⎠

⎛

⎜⎝

yi1

yi2

yi3

⎞

⎟⎠

+
⎛

⎜⎝

0

0

αμψ(yi1)

⎞

⎟⎠ (23)

where y = (yi1, yi2, yi3)
T ∈ R3 is the state vector,

ψ(s) =
{

0, s < 2.56;
ξ(s − 2.56), s ≥ 2.56.

(24)

The Rössler-like system has a chaotic attractor when
α = 0.03, β = 1.5, γ = 0.2, μ = 1.5, λ = 0.75,
ξ = 21.43 and Γ = 0.075. And it is easy to compute
that the Rössler-like system satisfies the Assumption 1
with L = 0.4926.

The map Φi is defined as

Φi(xi) =
(

xi1 + xi3,2xi2 + 1,
1

2
x2
i3 − xi1

)T

,

i = 1,2, . . . ,N.

Then

DΦi(xi) =
⎛

⎜⎝
1 0 1

0 2 0

−1 0 xi3

⎞

⎟⎠ .

According to the controllers in (4) and Eq. (23), we
can present the response network as follows:

ẏi1 = −αΓyi1 − αβyi2 − αλyi3 + αβ

+ (αΓ − αλ − a)xi1 + (2αβ + a)xi2

+ (αΓ − b)xi3 + 0.5αλx2
i3 + xi1xi2

+
10∑

j=1

aij (xj1 + xj3) +
10∑

j=1

bij ej1

+ σ0ei1Ẇ (t),

ẏi2 = αyi1 + αγyi2 + (2c − α)xi1 − (2αγ + 2)xi2

− αxi3 − 2xi1xi3 − αγ + 2
10∑

j=1

aij xj2 (25)

+
10∑

j=1

bij ej2 + σ0ei2Ẇ (t),

ẏi3 = −αμ
(
yi3 − ψ(yi1) + ψ(xi1 + xi3)

)

+ (a − αμ)xi1 − axi2 + (0.5αμ − b)x2
i3

+ xi1xi2xi3 + xi3

10∑

j=1

aij xj3 −
10∑

j=1

aij xj1

+
10∑

j=1

bij ej3 + σ0ei3Ẇ (t).

The configuration matrix for the drive network is
given as follows:

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 0 0 0 0 0 1
0 −3 0 1 0 1 0 0 1 0
1 0 −3 0 0 1 0 1 0 0
0 0 1 −1 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 1 0
1 0 0 0 1 −3 0 1 0 0
0 1 0 1 0 0 −3 0 0 1
0 0 1 0 1 0 0 −2 0 0
1 0 0 1 0 0 0 1 −3 0
1 0 0 0 0 1 0 0 0 −2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The configuration matrix for the response network is
given as follows:

B =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−3 0 1 0 0 1 0 0 0 1
0 −1 0 0 0 1 0 0 0 0
0 0 −2 0 0 1 0 0 0 1
0 0 1 −2 0 1 0 0 0 0
0 0 1 0 −1 0 0 0 0 0
0 0 0 0 1 −2 0 0 0 1
1 0 0 0 1 1 −3 0 0 0
0 0 0 0 0 1 1 −2 0 0
0 0 0 0 0 0 0 1 −1 0
0 0 0 1 0 0 0 0 0 −1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It is easy to compute that λmax(Qs) = 0.3896 and
σc = 1.33. According to Theorem 1, networks (1)
and (2) can reach generalized outer synchronization
if the noise intensity σ0 is larger than σc. Taking
σ0 = 1.4 (>σc), we simulate the evolution of the
networks according to the controllers defined in (4).
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Fig. 1 Trajectories of the synchronization error (a) and the to-
tal synchronization error (b) between networks (1) and (2) with
σ0 = 1.4

The synchronization errors eij (t) (i = 1,2, . . . ,10;
j = 1,2,3) and the total synchronization error E(t)

are shown in Figs. 1(a) and (b), which indicates that
the generalized outer synchronization between two
networks is achieved. To study the effect of noise on
the convergence speed, we simulate the evolution of
two networks according to the protocol defined in Eq.
(4) with various values of σ0. The results are exhibited
in Fig. 2. One can see that the synchronization speed
increases with the noise strength, which is consistent
with the analysis of Remark 3.

Example 2 In this example, we take the Lorenz sys-
tem as the node dynamics of the drive network (1) and
Chua’s circuit as the node dynamics of the response
network (2).

Fig. 2 Time evolutions of total synchronization error E(t) with
noise strength σ0 = 1.5,2.0,2.5

The Chua’s circuit can be depicted by three-dimen-
sional differential equations [32]:

ẏi = g(yi) =
⎛

⎝
−p − pb p 0

1 −1 1
0 −q 0

⎞

⎠

⎛

⎝
yi1

yi2

yi3

⎞

⎠

+
⎛

⎝
ω(yi1)

0
0

⎞

⎠ (26)

where yi = (yi1, yi2, yi3)
T ∈ R3 is the state vector,

ω(x1) = 0.5p(b − a)(|x1 + 1| − |x1 − 1|). In all of
the simulations, we always choose the system pa-
rameters of the Chua’s circuit as p = 10, q = 14.87,

a = −1.27, b = −0.68, which causes the Chua’s cir-
cuit to exhibit a double-scroll chaotic attractor. It is
easy to verify that the Chua’s circuit satisfies Assump-
tion 1 with L = 13.76.

The map φi is defined as

φi(xi) = (−xi1,2xi2,−3xi3)
T , i = 1,2, . . . ,N.

Then

Dφi(xi) =
⎛

⎝
−1 0 0
0 2 0
0 0 −3

⎞

⎠ .

According to the controllers in (4) and Eq. (26), we
can present the response network as follows:

ẏi1 = −(p + pb)yi1 + pyi2 + ω(yi1) + ω(xi1)

+ (a − p − pb)xi1 − (a + 2p)xi2
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−
10∑

j=1

aij xj1 +
10∑

j=1

bij ej1 + σ0ei1Ẇ (t),

ẏi2 = yi1 − yi2 + yi3 + 2cxi1 + 3xi3 − 2xi1xi3 (27)

+ 2
10∑

j=1

aij xj2 +
10∑

j=1

bij ej2 + σ0ei2Ẇ (t),

ẏi3 = −qyi2 + 2qxi2 + 3bxi3 − 3xi1xi2

− 3
10∑

j=1

aij xj3 +
10∑

j=1

bij ej3 + σ0ei3Ẇ (t).

In the numerical simulations, the configuration ma-
trices for the networks (1) and (2) are taken as those in
Example 1. It is easy to compute that σc = 5.32. One
should note that the theoretical criterion in Theorem 1
is just a sufficient condition, and networks (1) and (2)
will synchronize when σ0 exceeds a value which is less
than σc. To obtain a critical value of the noise strength
σ0 to achieve outer synchronization, we continuously
increase the noise strength σ0 from σ0 = 0.1, in steps
of 0.1. When σ0 < 3.2 no synchronous phenomenon
is observed. The critical value of the noise strength σ0

is 3.2. Taking σ0 = 3.2 (< σc), we simulate the evo-
lution of the networks according to the controllers de-
fined in (4). The numerical results in Figs. 3(a) and (b)
indicate that the generalized outer synchronization be-
tween two networks is reached, and the simulations
match the theoretical results perfectly. Figure 4 shows
that the synchronization speed increases with the noise
strength. These figures show that numerical results
are consistent with the theoretical results acquired in
Sect. 3.

5 Conclusions

In this paper, based on the theory of stochastic dif-
ferential equation, the constructive role of noise in
the outer synchronization between two different com-
plex networks has been investigated analytically and
numerically. Theoretical results show that generalized
outer synchronization between two different complex
networks could be achieved by increasing the strength
of noise. This shows that the noise really has a posi-
tive effect on the synchronization. Two representative
examples are provided to show the effectiveness and

Fig. 3 Trajectories of the synchronization error (a) and the to-
tal synchronization error (b) between networks (1) and (2) with
σ0 = 3.2

Fig. 4 Time evolutions of total synchronization error E(t) with
noise strength σ0 = 3.5,5.0,6.5
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feasibility of the theoretical results. The simulation re-
sults show that the synchronization speed is propor-
tional to the noise strength. The results in this paper
will be helpful in understanding the role of noise in
network synchronization. In addition, except for un-
avoidable noise, time delays due to the finite infor-
mation transmission and processing speeds among the
network nodes is another factor which may affect the
behavior of dynamics between coupled networks. The
present study does not consider the effect of time de-
lays; however, research is being pursued in this direc-
tion.
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