List of Figures and Tables

Figure 2-1. (A) An electrical switch, labelled x. (B) Switches x and y in series. (C) Switches x and y in parallel. | 31

Figure 2-2. A relay, in which a signal through an electromagnetic gate controls a switch that determines whether the current from the source will flow through the drain. | 35

Figure 3-1. The starting configuration for a five-disc version of the Tower of Hanoi problem. | 62

Figure 3-2. An intermediate state that occurs when MoveStack () is applied to a fivedisc version of the Tower of Hanoi. | 63

Figure 3-3. The root of the Sierpinski triangle is an equilateral triangle. | 64
Figure 3-4. The second step of constructing a Sierpinski triangle. | 64
Figure 3-5. The Sierpinski triangle that results when the recursive rule is applied four times to Figure 3-4. | 65

Figure 3-6. A phrase marker for the sentence Dogs bark. | 66
Figure 3-7. Phrase markers for three noun phrases: (A) the dog, (B) the cute dog, and (C) the cute brown scruffy dog. Note the recursive nature of (C). | 67

Figure 3-8. How a Turing machine processes its tape. | 69
Figure 3-9. How a finite state automaton processes the tape. Note the differences between Figures 3-9 and 3-8. | 70

Figure 3-10. Results of applying MDS to Table 3-1. | 88
Figure 3-11. Unique features pop out of displays, regardless of display size. | 101
Figure 3-12. Unique combinations of features do not pop out. | 102
Figure 3-13. The Müller-Lyer illusion. | 111
Figure 4-1. A distributed memory, initially described by James (1890a) but also part of modern connectionism. | 136

Figure 4-2. (A) Pattern space for AND; (B) Pattern space for XOR. | 143
Figure 4-3. A Rosenblatt perceptron that can compute the AND operation. | 144
Figure 4-4. A multilayer perceptron that can compute XOR. | 146
Figure 4-5. A typical multilayer perceptron has no direct connections between input and output units. | 147

Figure 4-6. Probability matching by perceptrons. Each line shows the perceptron
activation when a different cue (or discriminative stimulus, DS) is presented.
Activity levels quickly become equal to the probability that each cue was reinforced (Dawson et al., 2009). | 154

Figure 4-7. A small piano keyboard with numbered keys. Key 1 is C. | 162
Figure 4-8. The C major scale and some of its added note chords. | 162
Figure 4-9. The circle of fifths. | 163
Figure 4-10. The two circles of major seconds. | 167
Figure 4-11. The four circles of major thirds. | 168
Figure 4-12. The hidden unit space for the chord classification network. H1, H2, and H3 provide the activity of hidden units 1,2 , and 3 respectively. | 171

Figure 4-13. An example of output unit partitioning of the hidden unit space for the chord classification network. | 172

Figure 4-14. Any input pattern (dashed lines) whose vector falls in the plane orthogonal to the vector of connection weights (solid line) will be a trigger feature for a hidden value unit. | 174

Figure 4-15. An example of banding in a jittered density plot of a hidden value unit in a network that was trained on a logic problem. | 175

Figure 4-16. Coordinates associated with each output note, taken from an MDS of the Table 4-8 correlations. Shading reflects groupings of notes as circles of major thirds. | 197
Figure 8-1. Underdetermination of projected movement. | 364
Figure 8-2. The aperture problem in motion perception. | 365
Figure 8-3. An example Sudoku puzzle. | 372
Figure 8-4. The "there can be only one" constraint propagating from the cell labelled $5 \mid$ 372
Figure 8-5. The "last available label" constraint. | 373
Figure 8-6. The "naked pair constraint." | 374
Figure 8-7. The motion correspondence problem. | 376
Figure 8-8. Pylyshyn's theory of preattentive visual indexing provides referential links from object files to distal objects in the world. | 390
Figure 9-1. Word cloud generated from the text of Chapter 3 on classical cognitive science. | 401

Figure 9-2. Word cloud generated from the text of Chapter 4 on connectionist cognitive science. | 402

Figure 9-3. Word cloud generated from the text of Chapter 4 on embodied cognitive science. | 402

Table 2-1. Examples of the truth value system for two elementary propositions and some of their combinations. The possible values of p and q are given in the first two columns. The resulting values of different functions of these propositions are provided in the remaining columns. | 27

Table 2-2. Truth tables for all possible functions of pairs of propositions. Each function has a truth value for each possible combination of the truth values of p and q, given in the first four columns of the table. The Number column converts the first four values in a row into a binary number (Ladd, 1883). The logical notation for each function is taken Warren McCulloch (1988b). | 28

Table 3-1. Distances in kilometres between cities in Alberta, Canada. | 87
Table 4-1. Truth tables for the logical operations AND $(p \cdot q)$ and XOR $(p \wedge q)$, where the truth value of each operation is given as a function of the truth of each of two propositions, p and q. ' 1 ' indicates "true" and ' 0 ' indicates "false." The logical notation is taken from McCulloch (1988b). | 142

Table 4-2. Connection weights from the 12 input units to each of the three hidden units. Note that the first two hidden units adopt weights that assign input notes to the four circles of major thirds. The third hidden unit adopts weights that assign input notes to the two circles of major seconds. | 166

Table 4-3. The activations produced in each hidden unit by different subsets of input chords. | 169

Table 4-4. Dawson et al.'s (2000) step decision tree for classifying mushrooms. Decision points in this tree where mushrooms are classified (e.g., Rule 1 Edible) are given in bold. | 179

Table 4-5. Dawson et al.'s (2000) production system translation of Table 4-4. Conditions are given as sets of features. The Network Cluster column pertains to their artificial neural network trained on the mushroom problem and is described later in the text. | 181

Table 4-6. A progression of II-V-I progressions, descending from the key of C major. The chords in each row are played in sequence, and after playing one row, the next row is played. | 196

Table 9-1. Contrasts between the three schools of thought in cognitive science. | 404

